Fifth Annual Conference on Carbon Capture and Sequestration: May 8-11, 2006

Successful Borehole Seismic Imaging of Injected CO₂ in a Deep Saline Formation

T. M. Daley, L.R. Myer, G.M. Hoversten, S.M. Benson Lawrence Berkeley National Laboratory, Earth Science Division

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

- Background of the CO₂ Sequestration Pilot
- Goals of Crosswell and Vertical Seismic Profile (VSP)
- Data Acquisition
- VSP Estimate of Plume Extent Compared to Flow Model
- Crosswell Tomography and CO₂ Saturation Estimate
- Integration of Crosswell and VSP using Seismic Modeling
- Conclusions
- Plans for Frio-II

Frio Brine Pilot, Dayton, Tx

South Liberty

of the Frio Formation

Salt dome

Monitoring Well Injection Well

Trinity River bottoms

domestic watersupply well

To 1409

Injection interval ~7 m thick at 1530 m depth

- ~1600 metric tons CO₂
- Well spacing ~30 m
- Dip \sim 20 deg.
- Frio 'C' Sandstone: porosity 30%, permeability 1.5 Darcys, brine filled
- 150 bar, 53 deg. C, supercritical CO_2

Oil production

QAd2586x

Frio Site 2004

Work over rig at injection well, crane at monitoring well

Recording truck, sensor string on reel, wireline truck

Goals of Seismic Monitoring: Scale/Resolution of Geophysical Data

RELATIVE RESOLUTION

Goals of Seismic Monitoring: Time-Lapse Surveys (Pre and Post Injection)

- Crosswell
 - Spatial mapping of CO₂ between wells
 - Combine with other measurements to estimate CO₂ saturation between wells.

• VSP

- Spatial mapping of CO₂ beyond the well pair
- Imaging of nearby structure (faults, etc)

Data Acquisition

- Orbital vibrator source for crosswell; explosive source for VSP
- P/GSI 80 level 3-component sensor string for crosswell and VSP
- Crosswell 1.5 m spacing, VSP 4 m spacing
- Pre Injection Survey: July, 2004
- Post Injection Survey: Nov. 28, 2004 (1.5 months after injection)
- Both wells' perforations were cemented during both surveys

VSP: 8 Source Points 80 Sensor levels at ~8m spacing

Source Points – Plan View

VSP Reflection Section Site 1

Frio Analysis Window Enhanced Reflection

4 m spacing

VSP Time-Lapse Reflection Amplitude Change Site 1

Site 1 Reflection Difference (Post – Pre)

Major change in Frio due to CO₂ injection. Smaller change below Frio probably due to transmission through Frio.

Site 1 (North): Estimated Plume Extent

Over 70% increase in peak reflection amplitude. This is a strong response.

Amplitude change is a function of CO₂ Saturation.

Result: VSP can be used to Estimate the extent of CO₂ plume.

Comparison of VSP and Modeled CO₂ Saturation

Comparison of 3 Azimuths

Flow modeling: C. Doughty

Crosswell: Raw seismograms show change

AWRENCE BERKELEY NATIONAL LABORATORY

Crosswell Tomographic Inversion

- Invert difference; not difference inversions
- 2 m pixel size
- Limit ray angle (no long offsets, > 100 m)
- Correct for deviation of wells
- Use straight ray projection
- Apply static correction (borehole effects)
- Plotting interpolated to 0.5 m
- Thanks to J.E. Peterson (LBNL), for inversion

Pre - Post Velocity Difference

NATIONAL LABORATOR

Seismic P-wave and Pulsed Neutron (RST) Logs

CO₂ Saturation From Seismic using a rock physics model

Crosswell Derived CO2 Saturation

Distance (m)

Result: Crosswell seismic can be used to estimate CO₂ saturation spatially between wells.

Does the crosswell measurement explain the VSP result?

Finite-Difference seismic modeling of VSP using Crosswell measured velocity shows changes observed in field.

Comparison of Model and Field VSP Data

Result: Crosswell can predict VSP change if we know how to estimate CO₂ saturation beyond boreholes..

Conclusions

- Crosswell seismic images ~500 m/s (20%) velocity change due to CO_2 plume between wells. \rightarrow Estimate CO_2 saturation with rock physics model
- VSP easily "sees" the plume as ~70% increase in reflection amplitude. → Some surface monitoring is possible without full 3D surface seismic.
- VSP can estimate the extent of CO₂ plume on different azimuths.
- Results of crosswell and VSP can be integrated with flow model to improve predictions of storage performance.

Concluding Comment and Plans for Frio-II

Permanent installation of seismic sensors could be a cost effective tool for characterization and long term monitoring of sequestered CO₂.

Frio – II Plans:

Semi-permanent, tubing-deployed crosswell monitoring during injection.

One source, 24 Sensors

Injection Interval: • 'Blue' sand ~1650 m

Acknowledgements

- Frio Brine Pilot project supported by U.S. Dept of Energy, National Energy Technology Laboratory
- Texas Bureau of Economic Geology (S. Hovorka) managed the Frio Pilot Project
- LBNL work supported by U.S. Dept. of Energy, GEO-SEQ Project
- Paulsson Geophysical (P/GSI) provided support for use of sensors
- Flow modeling by Chris Doughty (LBNL)
- Thank you for your attention!